Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Fluoresc ; 32(5): 1959-1967, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1919862

ABSTRACT

A novel cyanine 3 (Cy3)-based bio-conjugated sensor has been developed to detect target DNA or extracted RNA from COVID -19 samples using the fluorescence resonance energy transfer (FRET) experiment. A special sequence of the COVID -19 genome was selected as a complementary DNA (target DNA) part. The opposite chain of this target sequence was designed in 2 parts; one part was attached to the Cy3 organic dye (capture DNA or Cy3- DNA), and the other part was attached to the BHQ2 molecule (quencher DNA or BHQ2- DNA). The Cy3 molecule acts as a donor pair, and BHQ2 acts as an acceptor pair in the FRET experiment. The capture DNA and quencher DNA can form a sandwiched complex in the presence of target DNA. The formation of the entitled sandwiched hybrid causes the decrement of emission intensity of the Cy3 donor in bio-conjugated Cy3-DNA via energy transfer from Cy3 (as a donor) to BHQ2 (as an acceptor). Indeed, in the presence of non-complementary DNA, the pairing of DNA strands does not occur, the FRET phenomenon does not exist, and therefore fluorescence intensity of Cy3 does not decrease. Moreover, this biosensor was successfully applied to analyze real samples containing extracted RNA of COVID -19 prepared for the reverse transcriptase-polymerase chain reaction (RT-PCR) test, and the results were promising.


Subject(s)
COVID-19 , Fluorescence Resonance Energy Transfer , DNA/analysis , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes , Humans , RNA , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL